

Pergamon

Tetrahedron Letters, Vol. 35, No. 12, pp. 1867-1870, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$6.00+0.00

0040-4039(94)E0179-2

Synthesis of a Benzylamidine Derived from D-Mannose. A Potent Mannosidase Inhibitor

Yves Blériot, Arnaud Genre-Grandpierre and Charles Tellier*

Laboratoire de RMN et Réactivité Chimique, associé au CNRS Faculté des Sciences et des Techniques 2, rue de la Houssinière 44072 Nantes, France

Abstract: The synthesis of a substituted mannopyranose-based amidine is described and its potential as glycosidase inhibitor evaluated. This new aminosugar derivative acts as a potent glycosidase inhibitor by virtue of its charge and shape similarities to the mannopyranosyl cation. The benzyl group of this pseudodisaccharide may also contribute to enzyme transition-state interactions.

There is an increasing interest in the isolation and synthesis of glycosidase inhibitors due to their potential as chemotherapeutic agents^{1,2}. Furthermore, they may constitute useful tools to unravel the catalytic mechanism of the corresponding enzymes^{3, 4}. The design of effective enzyme inhibitors generally relies on the mechanism of the enzyme catalyzed reaction. The enzymatic glycosidase mechanism is thought to involve a transient oxocarbonium with a flattened chair conformation stabilized by an active site catalytic residue with a complementary charge, identified as a carboxylate in most glycosidases⁴. Recently, amidine derivatives of sugars, 1 and 2 respectively, whose structure, shape and charge closely resemble the transient glycosyl cation have been proved to be potent and broad spectrum inhibitors of glycosidases^{5, 6}. However, less consideration has been given to mimick the aglycon part of the glycoside which plays an important role in the interaction of the inhibitor with the glycosidase⁷. Here, we report the synthesis of a benzylamidine 4 derived from D-mannose which contains features (the phenyl ring in this case) capable of mimicking the rate-determining transition state **3** for a mannosidase catalyzed hydrolysis. A phenyl aglycone part was chosen because phenylglycosides are often accepted as substrates by glycosidases. The incorporation of a methylene group between the phenyl and the amidine is supposed to mimick the stretching of the glycosidic bond that occurs along the glycosidic bond cleavage process⁸. This atom insertion could match the longer interatomic distance in the transition state⁹.

The synthesis has been achieved in 11 steps starting from commercially available L-gulonic acid lactone 5 which was transformed in six steps into a partially protected D-mannono- δ -lactam 6¹⁰. Selective deprotection of the TBDMS group using aqueous acetic acid yielded the 2,3-O-isopropylidene-D-mannono- δ -lactam 7 which

Scheme: a) Ref.10; b) THF/H2O/AcOH (1/1/3), 12h, 96%; c) 2,2 dimethoxypropane, APTS, dry acetone, 48 h, 70%; d) Lawesson's reagent (0.6 eq.), dry pyridine (3 eq.), dry benzene, reflux, 30 min., 77%; e) dry benzylamine (1.1 eq.), dry CH2Cl2, 48h, 68%; f) HCl/MeOH, 53%.

was then fully protected using an acetonide protective group to afford the 2,3:4,6-di-O-isopropylidene-Dmannono- δ -lactam 8. Subsequent thionation of the lactam using Lawesson's reagent¹¹ under basic conditions yielded the fully protected 2,3:4,6-di-O-isopropylidene-D-mannono- δ -thionolactam 9 which was purified by flash column chromatography (ethyl acetate/petroleum ether/pyridine 5:15:2, 77%). The next step involved the reaction of this thiolactam with benzylamine in anhydrous dichloromethane under nitrogen for 48 h to afford the protected amidine 10¹². The last step consisted in the deprotection of the amidine to yield the target molecule 4 as an amidinium salt¹³. Amidine 4 is fully protonated¹⁴ and stable for days at room temperature in neutral aqueous solution.

The effect of 4 on various glycosidases was next examined. Inhibition studies were performed under steady-state conditions with 5 inhibitor concentrations on different glycosidases at their optimum pH. Competitive inhibition has been observed for all the enzymes tested. Kinetic measurements on the jack bean α mannosidase (p-nitrophenyl- α -D-mannopyranoside as substrate, pH 4.5, 30°C, K_m = 2.5 mM) indicated a value of $K_i = 550$ nM using non linear regression analyses¹⁵. Strong inhibition of 4 (Ki = 6 μ M) was also observed on the β -mannosidase from Achatina achatina snail¹⁶ (p-nitrophenyl- β -D-mannopyranoside as substrate, pH, 30°C, $K_m = 2.9 \text{ mM}$). Kinetic measurements on sweet almond β -glucosidase (p-nitrophenyl- β -D-glucopyranoside as substrate, pH 5.6, 30°C, $K_m = 2.5$ mM) gave a value of $K_i = 25$ μ M. Finally kinetic measurements on Aspergillus oryzae β -galactosidase (p-nitrophenyl- β -D-galactopyranoside as substrate, pH 4.5, 30°C, $K_m = 1$ mM) indicated no inhibition at an inhibitor concentration of 0.4 mM. This new substituted mannoamidine is a more potent inhibitor of mannosidases than the corresponding piperidine analogue (deoxymannojirimycin)¹⁷. This may be attributed to its half-chair conformation which better mimicks the transition-state involved in glycosidase mechanism. Amidine 4 also showed a broad spectrum of inhibition against α and β mannosidases like the previous reported amidines. It has been suggested¹⁸ that the lack of stereochemical discrimination observed for half-chair like inhibitors could be attributed to the overriding electrostatic interaction between the enzyme carboxylate groups and the positive charge of the flattened chair of the inhibitor. The incorporation of a hydrophobic group in the aglycon moiety of 4 did not significantly improve the binding of the inhibitor to jack bean α -mannosidase compared to the mannoamidine 2⁵. However, a narrower specificity was observed with 4 compared to 1 and 2. Almost no inhibition was observed on Aspergillus oryzae and E. coli β -galactosidases and the binding constant was reduced 50 fold for β glucosidase. This suggests that the enzyme-aglycone interaction might contribute to the stereoselectivity of this binding.

Acknowledgements: The authors thank G. Nourisson for recording the MS spectra, Dr D. Dubreuil and Pr C. Rabiller for helpfull discussions, I. Jennings for his help in the synthesis of 6.

References and Notes

- 1. Karlsson, G. B.; Butters, T. D.; Dwek, R. A.; Platt, F. M. J. Biol. Chem. 1993, 268, 570-576.
- 2. Winchester, B.; Fleet, G. W. J. Glycobiology 1992, 2, 199-210.
- 3. Legler, G. Adv. Carbohydr. Chem. Biochem. 1990, 48, 319-384.
- 4. Sinnott, M. L. Chem. Rev. 1990, 90, 1171-1202.

- 5. Pan, Y.-T; Kaushal, G. P.; Papandreou, G.; Ganem, B.; Elbein, A. D. J. Biol. Chem. 1992, 267, 8313-8318.
- 6. Tong, M. K.; Papandreou, G.; Ganem, B. J. Am. Chem. Soc. 1990, 112, 6137-6139.
- 7. Field, R. A.; Haines, A. H.; Chrystal, E. J. T.; Luszniak, M. C. Biochem. J. 1991, 274, 885-889.
- 8. Andrews, C. W.; Fraser-Reid, B.; Bowen, J. P. J. Am. Chem. Soc. 1991, 113, 8293-8298.
- Blackburn, G. M.; Kingsbury, G.; Jayaweera, S.; Burton, D. R. Expanded transition state analogues. In *Catalytic antibodies*; Chadwick, D. J.; Marsh, J. Eds.; John Wiley & Sons Ltd.: Chichester, 1991; pp. 211-226.
- 10. Fleet, G. W. J.; Ramsden, N. G.; Witty, D. R. Tetrahedron 1989, 45, 319-326.
- 11. Scheibye, S.; Pedersen, B. S.; Lawesson, S.-O. Bull. Soc. Chim. Belg. 1978, 87, 229-238.
- 10: Rf = 0.75 (ethyl acetate/petroleum ether/pyridine = 5/15/2); ¹H NMR (250 MHz, CDCl₃/TMS): δ
 1.54 (3H, s, CH₃), 1.46 (3H, s, CH₃), 1.38 (6H, s, CH₃), 3.09 (1H, ddd, J = 5.5Hz, 9.9Hz and 10.6Hz), 3.56 (1H, dd, J = 6.6Hz and 9.9Hz), 3.79 (1H, dd, J = 11.7Hz and 10.6Hz), 4.22 (1H, dd, J = 5.5Hz and 11.7Hz), 4.44 (2H, s, CH₂N), 4.46 (1H, dd, J = 6.6Hz and 8.4Hz), 4.59 (1H, d, J = 8.4Hz), 7.22-7.44 (5H, m, C₆H₅). ¹³C NMR (250 MHz, CDCl₃): δ 19.26, 25.07, 26.92, 29.50, 45.04, 50.61, 65.82, 71.19, 74.42, 77.29, 99.21, 111.43, 127.44, 127.88, 128.65, 138.52, 159.73. MS (EI, 70 eV): m/z M⁺= 347, (CI, CH₄): m/z M+H⁺= 348.
- 4: Rf = 0.7 (CH₃CN/H₂O/AcOH = 20/4/1); ¹H NMR (250 MHz, D₂O/acetone): δ 3.42 (1H, m), 3.67 (1H, dd, J = 6.1Hz and 11.8 Hz), 3.82 (1H, dd, J = 4.2Hz and 11.8Hz), 3.90 (1H, dd, J = 5.2Hz and 7.5Hz), 4.12 (1H, dd, J = 3.5Hz and 5.2Hz), 4.61 (2H, s, CH₂N), 4.76 (1H, d, J = 3.5Hz), 7.28-7.44 (5H, m, C₆H₅). δ ¹³C NMR (250 MHz, D₂O/acetone): δ 44.82, 58.04, 60.13, 65.64, 67.67, 71.61, 126.87, 127.97, 128.70, 133.59, 164.13. MS (EI, 30 eV): 4 derivatized with 4 TMS on hydroxyl groups *m*/z M⁺= 554.
- 14. ¹H NMR pH titration indicated that amidine 4 starts to decompose at pH = 9.
- 15. The non linear regression analyses have been performed using the "Enzyme Kinetics" program, Trinity Software.
- 16. We thank Pr. B. Colas for having kindly provided a sample of β-mannosidase from Achatina achatina snail.
- 17. Legler, G. Carbohydr. Res. 1984, 128, 61-72.
- 18. Wang, Y.-F.; Dumas, D. P.; Wong, C.-H. Tetrahedron Lett. 1993, 34, 403-406.

(Received in France 10 December 1993; accepted 16 January 1994)